Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(6): 907-922, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37433640

RESUMO

Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.


Assuntos
DNA Forma Z , Nanoporos , Humanos , Motivos de Nucleotídeos , Análise de Sequência de DNA , DNA/genética , Composição de Bases , Sequenciamento de Nucleotídeos em Larga Escala
2.
Trends Genet ; 39(2): 109-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604282

RESUMO

In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.


Assuntos
Elementos de DNA Transponíveis , Genômica , Humanos , Elementos de DNA Transponíveis/genética , Sequência de Bases , Instabilidade Genômica/genética , Evolução Molecular
3.
DNA Repair (Amst) ; 119: 103402, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116264

RESUMO

G-quadruplexes (G4s), a type of non-B DNA, play important roles in a wide range of molecular processes, including replication, transcription, and translation. Genome integrity relies on efficient and accurate DNA synthesis, and is compromised by various stressors, to which non-B DNA structures such as G4s can be particularly vulnerable. However, the impact of G4 structures on DNA polymerase fidelity is largely unknown. Using an in vitro forward mutation assay, we investigated the fidelity of human DNA polymerases delta (δ4, four-subunit), eta (η), and kappa (κ) during synthesis of G4 motifs representing those in the human genome. The motifs differ in sequence, topology, and stability, features that may affect DNA polymerase errors. Polymerase error rate hierarchy (δ4 < κ < Î·) is largely maintained during G4 synthesis. Importantly, we observed unique polymerase error signatures during synthesis of VEGF G4 motifs, stable G4s which form parallel topologies. These statistically significant errors occurred within, immediately flanking, and encompassing the G4 motif. For pol δ4, the errors were deletions, insertions and complex errors within the G4 or encompassing the G4 motif and surrounding sequence. For pol η, the errors occurred in 3' sequences flanking the G4 motif. For pol κ, the errors were frameshift mutations within G-tracts of the G4. Because these error signatures were not observed during synthesis of an antiparallel G4 and, to a lesser extent, a hybrid G4, we suggest that G4 topology and/or stability could influence polymerase fidelity. Using in silico analyses, we show that most polymerase errors are predicted to have minimal effects on predicted G4 stability. Our results provide a unique view of G4s not previously elucidated, showing that G4 motif heterogeneity differentially influences polymerase fidelity within the motif and flanking sequences. Thus, our study advances the understanding of how DNA polymerase errors contribute to G4 mutagenesis.


Assuntos
Quadruplex G , DNA/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/genética
4.
Genome Res ; 32(4): 671-681, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149543

RESUMO

One of the defining features of transposable elements (TEs) is their ability to move to new locations in the host genome. To minimize the potentially deleterious effects of de novo TE insertions, hosts have evolved several mechanisms to control TE activity, including recombination-mediated removal and epigenetic silencing; however, increasing evidence suggests that silencing of TEs is often incomplete. The crow family experienced a recent radiation of LTR retrotransposons (LTRs), offering an opportunity to gain insight into the regulatory control of young, potentially still active TEs. We quantified the abundance of TE-derived transcripts across several tissues in 15 Eurasian crows (Corvus (corone) spp.) raised under common garden conditions and find evidence for ineffective TE suppression on the female-specific W Chromosome. Using RNA-seq data, we show that ∼9.5% of all transcribed TEs had considerably greater (average, 16-fold) transcript abundance in female crows and that >85% of these female-biased TEs originated on the W Chromosome. After accounting for differences in TE density among chromosomal classes, W-linked TEs were significantly more highly expressed than TEs residing on other chromosomes, consistent with ineffective silencing on the former. Together, our results suggest that the crow W Chromosome acts as a source of transcriptionally active TEs, with possible negative fitness consequences for female birds analogous to Drosophila (an X/Y system), in which overexpression of Y-linked TEs is associated with male-specific aging and fitness loss ("toxic Y").


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Animais , Aves , Drosophila , Epigênese Genética , Feminino , Masculino , Cromossomos Sexuais/genética
5.
Nat Rev Genet ; 22(9): 572-587, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050336

RESUMO

Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Desenvolvimento Industrial/tendências , Análise de Sequência de DNA/métodos , Humanos
7.
Nat Commun ; 11(1): 3403, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636372

RESUMO

Structural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions. We exploit sampling across wide phylogenetic timescales to validate SV genotypes and assess the contribution of SV to evolutionary processes in an avian model of incipient speciation. We reveal an evolutionary young (~530,000 years) cis-acting 2.25-kb LTR retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth and evolutionary significance of SV segregating in natural populations and highlight the need for reliable SV genotyping.


Assuntos
Variação Genética , Genética Populacional , Aves Canoras/genética , Animais , Inversão Cromossômica , Deleção de Genes , Genoma , Variação Estrutural do Genoma , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos , Análise de Sequência de DNA
8.
Mol Ecol Resour ; 18(6): 1188-1195, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30035372

RESUMO

The genomics revolution has led to the sequencing of a large variety of nonmodel organisms often referred to as "whole" or "complete" genome assemblies. But how complete are these, really? Here, we use birds as an example for nonmodel vertebrates and find that, although suitable in principle for genomic studies, the current standard of short-read assemblies misses a significant proportion of the expected genome size (7% to 42%; mean 20 ± 9%). In particular, regions with strongly deviating nucleotide composition (e.g., guanine-cytosine-[GC]-rich) and regions highly enriched in repetitive DNA (e.g., transposable elements and satellite DNA) are usually underrepresented in assemblies. However, long-read sequencing technologies successfully characterize many of these underrepresented GC-rich or repeat-rich regions in several bird genomes. For instance, only ~2% of the expected total base pairs are missing in the last chicken reference (galGal5). These assemblies still contain thousands of gaps (i.e., fragmented sequences) because some chromosomal structures (e.g., centromeres) likely contain arrays of repetitive DNA that are too long to bridge with currently available technologies. We discuss how to minimize the number of assembly gaps by combining the latest available technologies with complementary strengths. At last, we emphasize the importance of knowing the location, size and potential content of assembly gaps when making population genetic inferences about adjacent genomic regions.


Assuntos
Galinhas/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Composição de Bases , Biologia Computacional/métodos , Sequências Repetitivas de Ácido Nucleico
9.
Genome Res ; 27(5): 697-708, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28360231

RESUMO

Accurate and contiguous genome assembly is key to a comprehensive understanding of the processes shaping genomic diversity and evolution. Yet, it is frequently constrained by constitutive heterochromatin, usually characterized by highly repetitive DNA. As a key feature of genome architecture associated with centromeric and subtelomeric regions, it locally influences meiotic recombination. In this study, we assess the impact of large tandem repeat arrays on the recombination rate landscape in an avian speciation model, the Eurasian crow. We assembled two high-quality genome references using single-molecule real-time sequencing (long-read assembly [LR]) and single-molecule optical maps (optical map assembly [OM]). A three-way comparison including the published short-read assembly (SR) constructed for the same individual allowed assessing assembly properties and pinpointing misassemblies. By combining information from all three assemblies, we characterized 36 previously unidentified large repetitive regions in the proximity of sequence assembly breakpoints, the majority of which contained complex arrays of a 14-kb satellite repeat or its 1.2-kb subunit. Using whole-genome population resequencing data, we estimated the population-scaled recombination rate (ρ) and found it to be significantly reduced in these regions. These findings are consistent with an effect of low recombination in regions adjacent to centromeric or subtelomeric heterochromatin and add to our understanding of the processes generating widespread heterogeneity in genetic diversity and differentiation along the genome. By combining three different technologies, our results highlight the importance of adding a layer of information on genome structure that is inaccessible to each approach independently.


Assuntos
Mapeamento de Sequências Contíguas/normas , Genoma , Sequências de Repetição em Tandem , Animais , Cromatina/genética , Cromatina/metabolismo , Mapeamento de Sequências Contíguas/métodos , Corvos/genética , Recombinação Homóloga , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
10.
Nat Commun ; 7: 13195, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796282

RESUMO

Uncovering the genetic basis of species diversification is a central goal in evolutionary biology. Yet, the link between the accumulation of genomic changes during population divergence and the evolutionary forces promoting reproductive isolation is poorly understood. Here, we analysed 124 genomes of crow populations with various degrees of genome-wide differentiation, with parallelism of a sexually selected plumage phenotype, and ongoing hybridization. Overall, heterogeneity in genetic differentiation along the genome was best explained by linked selection exposed on a shared genome architecture. Superimposed on this common background, we identified genomic regions with signatures of selection specific to independent phenotypic contact zones. Candidate pigmentation genes with evidence for divergent selection were only partly shared, suggesting context-dependent selection on a multigenic trait architecture and parallelism by pathway rather than by repeated single-gene effects. This study provides insight into how various forms of selection shape genome-wide patterns of genomic differentiation as populations diverge.


Assuntos
Corvos/genética , Fluxo Gênico , Genoma , Isolamento Reprodutivo , Animais , Feminino , Especiação Genética , Geografia , Hibridização Genética , Masculino , Hibridização de Ácido Nucleico , Fenótipo , Pigmentação , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...